Problem Link

Description


A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.

The path sum of a path is the sum of the node's values in the path.

Given the root of a binary tree, return the maximum path sum of any non-empty path.

 

Example 1:

Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.

Example 2:

Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.

 

Constraints:

  • The number of nodes in the tree is in the range [1, 3 * 104].
  • -1000 <= Node.val <= 1000

Solution


C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int dfs(int& res, TreeNode* node) {
        if (node == nullptr) return 0;
 
        int val = node->val;
        int left = max(0, dfs(res, node->left)), right = max(0, dfs(res, node->right));
        res = max(res, val + left + right);
 
        return val + max(0, max(left, right));
    }
 
    int maxPathSum(TreeNode* root) {
        int res = INT_MIN;
 
        dfs(res, root);
        return res;
    }
};

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def maxPathSum(self, root: Optional[TreeNode]) -> int:
        res = -inf
 
        def go(node):
            nonlocal res
            if not node: return 0
 
            curr = node.val
            left, right = max(0, go(node.left)), max(0, go(node.right))
            res = max(res, node.val + left + right)
 
            return node.val + max(0, left, right)
            
        go(root)
        return res