You are given a string s that consists of the digits '1' to '9' and two integers k and minLength.
A partition of s is called beautiful if:
s is partitioned into k non-intersecting substrings.
Each substring has a length of at leastminLength.
Each substring starts with a prime digit and ends with a non-prime digit. Prime digits are '2', '3', '5', and '7', and the rest of the digits are non-prime.
Return the number of beautiful partitions of s. Since the answer may be very large, return it modulo109 + 7.
A substring is a contiguous sequence of characters within a string.
Example 1:
Input: s = "23542185131", k = 3, minLength = 2
Output: 3
Explanation: There exists three ways to create a beautiful partition:
"2354 | 218 | 5131"
"2354 | 21851 | 31"
"2354218 | 51 | 31"
Example 2:
Input: s = "23542185131", k = 3, minLength = 3
Output: 1
Explanation: There exists one way to create a beautiful partition: "2354 | 218 | 5131".
Example 3:
Input: s = "3312958", k = 3, minLength = 1
Output: 1
Explanation: There exists one way to create a beautiful partition: "331 | 29 | 58".