Problem Link

Description


You are given two strings of the same length s1 and s2 and a string baseStr.

We say s1[i] and s2[i] are equivalent characters.

  • For example, if s1 = "abc" and s2 = "cde", then we have 'a' == 'c', 'b' == 'd', and 'c' == 'e'.

Equivalent characters follow the usual rules of any equivalence relation:

  • Reflexivity: 'a' == 'a'.
  • Symmetry: 'a' == 'b' implies 'b' == 'a'.
  • Transitivity: 'a' == 'b' and 'b' == 'c' implies 'a' == 'c'.

For example, given the equivalency information from s1 = "abc" and s2 = "cde", "acd" and "aab" are equivalent strings of baseStr = "eed", and "aab" is the lexicographically smallest equivalent string of baseStr.

Return the lexicographically smallest equivalent string of baseStr by using the equivalency information from s1 and s2.

 

Example 1:

Input: s1 = "parker", s2 = "morris", baseStr = "parser"
Output: "makkek"
Explanation: Based on the equivalency information in s1 and s2, we can group their characters as [m,p], [a,o], [k,r,s], [e,i].
The characters in each group are equivalent and sorted in lexicographical order.
So the answer is "makkek".

Example 2:

Input: s1 = "hello", s2 = "world", baseStr = "hold"
Output: "hdld"
Explanation: Based on the equivalency information in s1 and s2, we can group their characters as [h,w], [d,e,o], [l,r].
So only the second letter 'o' in baseStr is changed to 'd', the answer is "hdld".

Example 3:

Input: s1 = "leetcode", s2 = "programs", baseStr = "sourcecode"
Output: "aauaaaaada"
Explanation: We group the equivalent characters in s1 and s2 as [a,o,e,r,s,c], [l,p], [g,t] and [d,m], thus all letters in baseStr except 'u' and 'd' are transformed to 'a', the answer is "aauaaaaada".

 

Constraints:

  • 1 <= s1.length, s2.length, baseStr <= 1000
  • s1.length == s2.length
  • s1, s2, and baseStr consist of lowercase English letters.

Solution


Python3

class DSU:
    def __init__(self, n):
        self.parent = [i for i in range(n)]
        self.rank = [0] * n
 
    def find(self, x):
        if self.parent[x] == x:
            return self.parent[x]
        self.parent[x] = self.find(self.parent[x])
        return self.parent[x]
 
    def union(self, u, v):
        pu = self.find(u)
        pv = self.find(v)
 
        if (pu == pv): return
 
        if self.rank[pu] < self.rank[pv]:
            pu, pv = pv, pu
 
        # ensure self.rank[pu] >= self.rank[pv]
        self.parent[pv] = pu
        if self.rank[pu] == self.rank[pv]:
            self.rank[pu] += 1
 
class Solution:
    def smallestEquivalentString(self, s1: str, s2: str, baseStr: str) -> str:
        N = len(s1)
        uf = DSU(26)
 
        for a, b in zip(s1, s2):
            uf.union(ord(a) - ord('a'), ord(b) - ord('a'))
        
        mp = {}
        for k in range(26):
            p = uf.find(k)
            if p not in mp:
                mp[p] = k
            else:
                mp[p] = min(mp[p], k)
        
        res = []
        for x in baseStr:
            k = ord(x) - ord('a')
            p = uf.find(k)
 
            res.append(chr(ord('a') + mp[p]))
        
        return "".join(res)