Description
You are given two integer arrays nums1 and nums2 sorted in non-decreasing order and an integer k.
Define a pair (u, v) which consists of one element from the first array and one element from the second array.
Return the k pairs (u1, v1), (u2, v2), ..., (uk, vk) with the smallest sums.
Example 1:
Input: nums1 = [1,7,11], nums2 = [2,4,6], k = 3 Output: [[1,2],[1,4],[1,6]] Explanation: The first 3 pairs are returned from the sequence: [1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]
Example 2:
Input: nums1 = [1,1,2], nums2 = [1,2,3], k = 2 Output: [[1,1],[1,1]] Explanation: The first 2 pairs are returned from the sequence: [1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]
Constraints:
1 <= nums1.length, nums2.length <= 105-109 <= nums1[i], nums2[i] <= 109nums1andnums2both are sorted in non-decreasing order.1 <= k <= 104k <= nums1.length * nums2.length
Solution
Python3
class Solution:
def kSmallestPairs(self, nums1: List[int], nums2: List[int], k: int) -> List[List[int]]:
M, N = len(nums1), len(nums2)
pq = []
res = []
for i in range(min(M, k)):
heappush(pq, (nums1[i] + nums2[0], i, 0))
for _ in range(k):
if not pq: break
_, i, j = heappop(pq)
res.append([nums1[i], nums2[j]])
if j == N - 1: continue
heappush(pq, (nums1[i] + nums2[j + 1], i, j + 1))
return res