Description
A split of an integer array is good if:
- The array is split into three non-empty contiguous subarrays - named
left,mid,rightrespectively from left to right. - The sum of the elements in
leftis less than or equal to the sum of the elements inmid, and the sum of the elements inmidis less than or equal to the sum of the elements inright.
Given nums, an array of non-negative integers, return the number of good ways to split nums. As the number may be too large, return it modulo 109 + 7.
Β
Example 1:
Input: nums = [1,1,1] Output: 1 Explanation: The only good way to split nums is [1] [1] [1].
Example 2:
Input: nums = [1,2,2,2,5,0] Output: 3 Explanation: There are three good ways of splitting nums: [1] [2] [2,2,5,0] [1] [2,2] [2,5,0] [1,2] [2,2] [5,0]
Example 3:
Input: nums = [3,2,1] Output: 0 Explanation: There is no good way to split nums.
Β
Constraints:
3 <= nums.length <= 1050 <= nums[i] <= 104
Solution
Python3
class Solution:
def waysToSplit(self, nums: List[int]) -> int:
prefix = [0]
for num in nums:
prefix.append(prefix[-1] + num)
n = len(nums)
M = 10 ** 9 + 7
res = 0
for i in range(1, n-1):
mid = bisect_left(prefix, 2 * prefix[i])
right = bisect_right(prefix, (prefix[-1] + prefix[i]) // 2)
res += max(0, min(n,right) - max(i+1, mid))
return res % MC++
class Solution {
public:
int waysToSplit(vector<int>& nums) {
int M = 1e9 + 7;
int n = nums.size();
for (int i = 1; i < n; i++)
nums[i] += nums[i-1];
long long res = 0;
for (int i = 0; i < n - 1; i++){
int left = nums[i];
int remaining = nums[n-1] - left;
int max_mid = remaining / 2;
int mid_start = lower_bound(nums.begin()+i+1, nums.end()-1, left * 2) - nums.begin();
int right_start = upper_bound(nums.begin()+i+1, nums.end()-1, left + max_mid) - nums.begin();
res += max(0, right_start - mid_start);
res %= M;
}
return res % M;
}
};Java
class Solution {
public int waysToSplit(int[] nums) {
int MOD = (int) (1e9 + 7);
int N = nums.length;
// prefix array
int[] A = new int[N];
A[0] = nums[0];
for (int i = 1; i < N; ++i) A[i] = A[i - 1] + nums[i];
int res = 0;
for (int i = 1; i < N - 1; ++i) {
int left = helper(A, A[i - 1], i, true);
int right = helper(A, A[i - 1], i, false);
if (left == -1 || right == -1) continue; // none is satisfied
res = (res + (right - left + 1) % MOD) % MOD;
}
return res;
}
private int helper(int[] A, int leftSum, int index, boolean searchLeft) {
int N = A.length;
int l = index, r = N - 2;
int res = -1;
while (l <= r) {
int m = (r - l) / 2 + l;
int midSum = A[m] - A[index - 1];
int rightSum = A[N - 1] - A[m];
if (leftSum <= midSum && midSum <= rightSum) {
res = m;
if (searchLeft) r = m - 1;
else l = m + 1;
} else if (leftSum > midSum) { // shrink left
l = m + 1;
} else { // shrink right
r = m - 1;
}
}
return res;
}
}