Problem Link

Description


You are given two integers num1 and num2.

In one operation, you can choose integer i in the range [0, 60] and subtract 2i + num2 from num1.

Return the integer denoting the minimum number of operations needed to make num1 equal to 0.

If it is impossible to make num1 equal to 0, return -1.

 

Example 1:

Input: num1 = 3, num2 = -2
Output: 3
Explanation: We can make 3 equal to 0 with the following operations:
- We choose i = 2 and substract 22 + (-2) from 3, 3 - (4 + (-2)) = 1.
- We choose i = 2 and substract 22 + (-2) from 1, 1 - (4 + (-2)) = -1.
- We choose i = 0 and substract 20 + (-2) from -1, (-1) - (1 + (-2)) = 0.
It can be proven, that 3 is the minimum number of operations that we need to perform.

Example 2:

Input: num1 = 5, num2 = 7
Output: -1
Explanation: It can be proven, that it is impossible to make 5 equal to 0 with the given operation.

 

Constraints:

  • 1 <= num1 <= 109
  • -109 <= num2 <= 109

Solution


Python3

class Solution:
    def makeTheIntegerZero(self, num1: int, num2: int) -> int:
        for k in range(61):
            target = num1 - k * num2
 
            if target >= 0 and target.bit_count() <= k <= target:
                return k
        
        return -1