Problem Link

Description


You are given an integer array nums. The range of a subarray of nums is the difference between the largest and smallest element in the subarray.

Return the sum of all subarray ranges of nums.

A subarray is a contiguous non-empty sequence of elements within an array.

 

Example 1:

Input: nums = [1,2,3]
Output: 4
Explanation: The 6 subarrays of nums are the following:
[1], range = largest - smallest = 1 - 1 = 0 
[2], range = 2 - 2 = 0
[3], range = 3 - 3 = 0
[1,2], range = 2 - 1 = 1
[2,3], range = 3 - 2 = 1
[1,2,3], range = 3 - 1 = 2
So the sum of all ranges is 0 + 0 + 0 + 1 + 1 + 2 = 4.

Example 2:

Input: nums = [1,3,3]
Output: 4
Explanation: The 6 subarrays of nums are the following:
[1], range = largest - smallest = 1 - 1 = 0
[3], range = 3 - 3 = 0
[3], range = 3 - 3 = 0
[1,3], range = 3 - 1 = 2
[3,3], range = 3 - 3 = 0
[1,3,3], range = 3 - 1 = 2
So the sum of all ranges is 0 + 0 + 0 + 2 + 0 + 2 = 4.

Example 3:

Input: nums = [4,-2,-3,4,1]
Output: 59
Explanation: The sum of all subarray ranges of nums is 59.

 

Constraints:

  • 1 <= nums.length <= 1000
  • -109 <= nums[i] <= 109

 

Follow-up: Could you find a solution with O(n) time complexity?

Solution


Python3

class Solution:
    def subArrayRanges(self, nums: List[int]) -> int:
        N = len(nums)
        res = 0
        prevSmaller = [-1] * N
        nextSmaller = [N] * N
        prevLarger = [-1] * N
        nextLarger = [N] * N
 
        # construct nextSmaller array
        stack = []
        for i, x in enumerate(nums):
            while stack and x < nums[stack[-1]]:
                nextSmaller[stack.pop()] = i
            
            stack.append(i)
        
        # construct prevSmaller array
        stack = []
        for i in range(N - 1, -1, -1):
            # add equal sign here to prevent double counting
            while stack and nums[i] <= nums[stack[-1]]:
                prevSmaller[stack.pop()] = i
            
            stack.append(i)
 
        # construct nextLarger array
        stack = []
        for i, x in enumerate(nums):
            while stack and x > nums[stack[-1]]:
                nextLarger[stack.pop()] = i
            
            stack.append(i)
        
        # construct prevLarger array
        stack = []
        for i in range(N - 1, -1, -1):
            # add equal sign here to prevent double counting
            while stack and nums[i] >= nums[stack[-1]]:
                prevLarger[stack.pop()] = i
            
            stack.append(i)
        
        for i, x in enumerate(nums):
            leftMin, rightMin = i - prevSmaller[i], nextSmaller[i] - i
            leftMax, rightMax = i - prevLarger[i], nextLarger[i] - i
 
            mmin = leftMin * rightMin
            mmax = leftMax * rightMax
 
            res += x * (mmax - mmin)
        
        return res