Problem Link

Description


You are given the array nums consisting of n positive integers. You computed the sum of all non-empty continuous subarrays from the array and then sorted them in non-decreasing order, creating a new array of n * (n + 1) / 2 numbers.

Return the sum of the numbers from index left to index right (indexed from 1), inclusive, in the new array. Since the answer can be a huge number return it modulo 109 + 7.

 

Example 1:

Input: nums = [1,2,3,4], n = 4, left = 1, right = 5
Output: 13 
Explanation: All subarray sums are 1, 3, 6, 10, 2, 5, 9, 3, 7, 4. After sorting them in non-decreasing order we have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 1 to ri = 5 is 1 + 2 + 3 + 3 + 4 = 13. 

Example 2:

Input: nums = [1,2,3,4], n = 4, left = 3, right = 4
Output: 6
Explanation: The given array is the same as example 1. We have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 3 to ri = 4 is 3 + 3 = 6.

Example 3:

Input: nums = [1,2,3,4], n = 4, left = 1, right = 10
Output: 50

 

Constraints:

  • n == nums.length
  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= 100
  • 1 <= left <= right <= n * (n + 1) / 2

Solution


C++

class Solution {
public:
    int rangeSum(vector<int>& nums, int n, int left, int right) {
        priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;
        for (int i = 0; i < n; i++) pq.push({nums[i], i + 1});
        
        int ans = 0, MOD = 1e9 + 7;
        for (int i = 1; i <= right; i++) {
            auto p = pq.top(); pq.pop();
 
            if (i >= left) ans = (ans + p.first) % MOD;
 
            if (p.second < n) {
                p.first += nums[p.second++];
                pq.push(p);
            }
        }
 
        return ans;
    }
};

Python3

class Solution:
    def rangeSum(self, nums: List[int], N: int, left: int, right: int) -> int:
        M = 10 ** 9 + 7
        pq = [] # max priority queue
        res = 0
 
        for i, x in enumerate(nums):
            heappush(pq, (x, i + 1))
        
        for i in range(1, right + 1):
            x, j = heappop(pq)
 
            if i >= left:
                res += x
                res %= M
            
            if j < N:
                heappush(pq, (x + nums[j], j + 1))
        
        return res