Problem Link

Description


Given an array of positive integers nums, return the maximum possible sum of an ascending subarray in nums.

A subarray is defined as a contiguous sequence of numbers in an array.

A subarray [numsl, numsl+1, ..., numsr-1, numsr] is ascending if for all i where l <= i < r, numsi < numsi+1. Note that a subarray of size 1 is ascending.

 

Example 1:

Input: nums = [10,20,30,5,10,50]
Output: 65
Explanation: [5,10,50] is the ascending subarray with the maximum sum of 65.

Example 2:

Input: nums = [10,20,30,40,50]
Output: 150
Explanation: [10,20,30,40,50] is the ascending subarray with the maximum sum of 150.

Example 3:

Input: nums = [12,17,15,13,10,11,12]
Output: 33
Explanation: [10,11,12] is the ascending subarray with the maximum sum of 33.

 

Constraints:

  • 1 <= nums.length <= 100
  • 1 <= nums[i] <= 100

Solution


Python3

class Solution:
    def maxAscendingSum(self, nums: List[int]) -> int:
        N = len(nums)
        res = curr = nums[0]
        
        for i in range(1, N):
            if nums[i] > nums[i - 1]:
                curr += nums[i]
            else:
                curr = nums[i]
                
            res = max(res, curr)
        
        return res