Problem Link

Description


Given an integer num, find the closest two integers in absolute difference whose product equalsΒ num + 1Β or num + 2.

Return the two integers in any order.

Β 

Example 1:

Input: num = 8
Output: [3,3]
Explanation: For num + 1 = 9, the closest divisors are 3 & 3, for num + 2 = 10, the closest divisors are 2 & 5, hence 3 & 3 is chosen.

Example 2:

Input: num = 123
Output: [5,25]

Example 3:

Input: num = 999
Output: [40,25]

Β 

Constraints:

  • 1 <= num <= 10^9

Solution


Python3

class Solution:
    def closestDivisors(self, num: int) -> List[int]:
        
        for i in range(int(math.sqrt(num+2)), 0 , -1):
            if (num + 1) % i == 0:
                return [i, (num+1)//i]
            
            if (num + 2) % i == 0:
                return [i, (num+2)//i]