Problem Link

Description


You are given an array nums which is a permutation of [0, 1, 2, ..., n - 1]. The score of any permutation of [0, 1, 2, ..., n - 1] named perm is defined as:

score(perm) = |perm[0] - nums[perm[1]]| + |perm[1] - nums[perm[2]]| + ... + |perm[n - 1] - nums[perm[0]]|

Return the permutation perm which has the minimum possible score. If multiple permutations exist with this score, return the one that is lexicographically smallest among them.

 

Example 1:

Input: nums = [1,0,2]

Output: [0,1,2]

Explanation:

The lexicographically smallest permutation with minimum cost is [0,1,2]. The cost of this permutation is |0 - 0| + |1 - 2| + |2 - 1| = 2.

Example 2:

Input: nums = [0,2,1]

Output: [0,2,1]

Explanation:

The lexicographically smallest permutation with minimum cost is [0,2,1]. The cost of this permutation is |0 - 1| + |2 - 2| + |1 - 0| = 2.

 

Constraints:

  • 2 <= n == nums.length <= 14
  • nums is a permutation of [0, 1, 2, ..., n - 1].

Solution


Python3

class Solution:
    def findPermutation(self, nums: List[int]) -> List[int]:
        N = len(nums)
        full_mask = (1 << N) - 1
        nxt = {}
 
        # The score function is cyclic, so we can always set perm[0] = 0 for the smallest lexical order.
 
        @cache
        def go(mask, last):
            if mask == full_mask:
                nxt[(mask, last)] = (mask, last)
                return abs(last - nums[0])
            
            res = inf
 
            for i in range(N):
                if mask & (1 << i): continue
 
                score = go(mask | (1 << i), i) + abs(last - nums[i])
 
                if score < res:
                    res = score
                    nxt[(mask, last)] = (mask | (1 << i), i)
            
            return res
        
        go(1, 0)
        res = []
        curr = (1, 0)
        for _ in range(N):
            res.append(curr[1])
            curr = nxt[curr]
        
        return res