Problem Link

Description


You are given a 0-indexed array of positive integers nums.

A subarray of nums is called incremovable if nums becomes strictly increasing on removing the subarray. For example, the subarray [3, 4] is an incremovable subarray of [5, 3, 4, 6, 7] because removing this subarray changes the array [5, 3, 4, 6, 7] to [5, 6, 7] which is strictly increasing.

Return the total number of incremovable subarrays of nums.

Note that an empty array is considered strictly increasing.

A subarray is a contiguous non-empty sequence of elements within an array.

 

Example 1:

Input: nums = [1,2,3,4]
Output: 10
Explanation: The 10 incremovable subarrays are: [1], [2], [3], [4], [1,2], [2,3], [3,4], [1,2,3], [2,3,4], and [1,2,3,4], because on removing any one of these subarrays nums becomes strictly increasing. Note that you cannot select an empty subarray.

Example 2:

Input: nums = [6,5,7,8]
Output: 7
Explanation: The 7 incremovable subarrays are: [5], [6], [5,7], [6,5], [5,7,8], [6,5,7] and [6,5,7,8].
It can be shown that there are only 7 incremovable subarrays in nums.

Example 3:

Input: nums = [8,7,6,6]
Output: 3
Explanation: The 3 incremovable subarrays are: [8,7,6], [7,6,6], and [8,7,6,6]. Note that [8,7] is not an incremovable subarray because after removing [8,7] nums becomes [6,6], which is sorted in ascending order but not strictly increasing.

 

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 109

Solution


Python3

class Solution:
    def incremovableSubarrayCount(self, nums: List[int]) -> int:
        N = len(nums)
        right = [nums[-1]]
 
        for i in range(N - 2, -1, -1):
            if nums[i] < nums[i + 1]:
                right.append(nums[i])
            else:
                break
        
        right.reverse()
        if len(right) == N: return N * (N + 1) // 2
        
        res = len(right) + 1
        last = -1
 
        for i in range(0, N - len(right)):
            if nums[i] <= last: break
            last = nums[i]
 
            res += len(right) - bisect_right(right, nums[i]) + 1
        
        return res